AB52 Active Band Pass Filter

> Operating Manual Ver.1.1

An ISO 9001 : 2000 company



Innovative Technology Ecosystem 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91- 731- 2555643 e mail : <u>info@scientech.bz</u> Website : <u>www.scientech.bz</u> Toll free : 1800-103-5050



# Active Band Pass Filter AB52

#### **Table of Contents**

| 1. | Introduction                                       | 4  |
|----|----------------------------------------------------|----|
| 2. | Theory                                             | 6  |
| 3. | Experiment<br>Study of the Active Band Pass Filter | 8  |
| 4. | Data Sheet                                         | 11 |
| 5. | Warranty                                           | 12 |
| 6. | List of Accessories                                | 12 |

#### **RoHS Compliance**

Scientech Products are RoHS Complied.

RoHS Directive concerns with the restrictive use of Hazardous substances (Pb, Cd, Cr, Hg, Br compounds) in electric and electronic equipments.

Scientech products are "Lead Free" and "Environment Friendly".

It is mandatory that service engineers use lead free solder wire and use the soldering irons upto (25 W) that reach a temperature of  $450^{\circ}\text{C}$  at the tip as the melting temperature of the unleaded solder is higher than the leaded solder.



#### Introduction

**AB52** is a compact ready to use **Active Band-Pass Filter** experiment board. It illustrates the functionality of Active Band-Pass Filter at adjustable High cutoff frequency ( $f_H$ ) and Low cutoff frequency ( $f_L$ ). It can be used as stand alone unit with external Power Supply or can be used with **Scientech Analog Lab ST2612** which has built-in DC Power Supply, AC Power Supply, function generator, modulation generator, continuity tester, toggle switches, potentiometers.

#### **List of Boards :**

| Model        | Name                                                           |  |  |  |  |  |
|--------------|----------------------------------------------------------------|--|--|--|--|--|
| AB01         | Diode characteristics (Si, Zener, LED)                         |  |  |  |  |  |
| AB02         | Transistor characteristics (CB NPN)                            |  |  |  |  |  |
| AB03         | Transistor characteristics (CB PNP)                            |  |  |  |  |  |
| <b>AB04</b>  | Transistor characteristics (CE NPN)                            |  |  |  |  |  |
| AB05         | Transistor characteristics (CE PNP)                            |  |  |  |  |  |
| <b>AB06</b>  | Transistor characteristics (CC NPN)                            |  |  |  |  |  |
| <b>AB07</b>  | Transistor characteristics (CC PNP)                            |  |  |  |  |  |
| <b>AB08</b>  | FET characteristics                                            |  |  |  |  |  |
| AB09         | Rectifier Circuits                                             |  |  |  |  |  |
| <b>AB10</b>  | Wheatstone Bridge                                              |  |  |  |  |  |
| AB11         | Maxwell's Bridge                                               |  |  |  |  |  |
| AB12         | De Sauty's Bridge                                              |  |  |  |  |  |
| AB13         | Schering Bridge                                                |  |  |  |  |  |
| AB15         | Common Emitter Amplifier                                       |  |  |  |  |  |
| AB14         | Darlington Pair                                                |  |  |  |  |  |
| AB16         | Common Collector Amplifier                                     |  |  |  |  |  |
| <b>AB17</b>  | Common Base Amplifier                                          |  |  |  |  |  |
| AB18         | Cascode Amplifier                                              |  |  |  |  |  |
| AB19         | RC-Coupled Amplifier                                           |  |  |  |  |  |
| AB20         | Direct Coupled Amplifier                                       |  |  |  |  |  |
| AB21         | Class A Amplifier                                              |  |  |  |  |  |
| AB22         | Class B Amplifier (push pull emitter follower)                 |  |  |  |  |  |
| AB23         | Class C Tuned Amplifier                                        |  |  |  |  |  |
| AB25         | Phase Locked Loop (FM Demodulator & Frequency Divider /        |  |  |  |  |  |
| A D 10       | Multiplier)                                                    |  |  |  |  |  |
| AB28<br>AB29 | Multivibrator (Mono stable / Astable)<br>F-V and V-F Converter |  |  |  |  |  |
| AB29<br>AB30 | V-I and I-V Converter                                          |  |  |  |  |  |
| AB30<br>AB31 | Zener Voltage Regulator                                        |  |  |  |  |  |
| AB31<br>AB32 | Transistor Series Voltage Regulator                            |  |  |  |  |  |
| AB32<br>AB33 | Transistor Shunt Voltage Regulator                             |  |  |  |  |  |
| AB35<br>AB35 | DC Ammeter                                                     |  |  |  |  |  |
| AB39         | Instrumentation Amplifier                                      |  |  |  |  |  |
| AB41         | Differential Amplifier (Transistorized)                        |  |  |  |  |  |
| AD41         | Differential Amplifier (Transistorized)                        |  |  |  |  |  |

| AB52        |                                                                    |
|-------------|--------------------------------------------------------------------|
| <b>AB42</b> | Operational Amplifier (Inverting / Non-inverting / Differentiator) |
| <b>AB43</b> | Operational Amplifier (Adder/Scalar)                               |
| <b>AB44</b> | Operational Amplifier (Integrator/ Differentiator)                 |
| <b>AB45</b> | Schmitt Trigger and Comparator                                     |
| <b>AB49</b> | K Derived Filter                                                   |
| <b>AB51</b> | Active filters (Low Pass and High Pass)                            |
| <b>AB54</b> | Tschebyscheff Filter                                               |
| <b>AB56</b> | Fiber Optic Analog Link                                            |
| <b>AB57</b> | Owen's Bridge                                                      |
| <b>AB58</b> | Anderson's Bridge                                                  |
| <b>AB59</b> | Maxwell's Inductance Bridge                                        |
| <b>AB64</b> | RC – Coupled Amplifier with Feedback                               |
| <b>AB65</b> | Phase Shift Oscillator                                             |
| <b>AB66</b> | Wien Bridge Oscillators                                            |
| <b>AB67</b> | Colpitt Oscillator                                                 |
| <b>AB68</b> | Hartley Oscillator                                                 |
| AB80        | RLC Series and RLC Parallel Resonance                              |
| AB82        | Thevenin's and Maximum power Transfer Theorem                      |
| AB83        | Reciprocity and Superposition Theorem                              |
| <b>AB84</b> | Tellegen's Theorem                                                 |
| AB85        | Norton's theorem                                                   |
| <b>AB88</b> | Diode Clipper                                                      |
| <b>AB89</b> | Diode Clampers                                                     |
| <b>AB90</b> | Two port network parameter                                         |
| AB91        | Optical Transducer (Photovoltaic cell)                             |
| AB92        | Optical Transducer (Photoconductive cell/LDR)                      |
| AB93        | Optical Transducer (Phototransistor)                               |
| AB96        | Temperature Transducer (RTD & IC335)                               |
| <b>AB97</b> | Temperature Transducer (Thermocouple)                              |
| AB101       | DSB Modulator and Demodulator                                      |
| AB102       | SSB Modulator and Demodulator                                      |
| AB106       | FM Modulator and Demodulator                                       |
|             | and ma                                                             |

..... and many more

#### Theory

An electric filter is a frequency selective circuit that passes electric signals of specific band of frequencies and attenuates signal of frequencies outside this band. Depending on the type of elements used in their construction filters may be classified as passive or active filters. Elements used in passive filters are resistors, capacitors and inductors.

Active filter consists of active components such as Op-amp, transistors with passive elements.

Most commonly used filters are:

- 1. Low Pass Filter
- 2. High Pass Filter
- 3. Band-Pass Filter

#### **Band-Pass Filter :**

It is a frequency selective circuit, which passes signals of particular band of frequencies lies between its low cut off frequency ( $f_L$ ) and high cut off frequency ( $f_h$ ) and attenuates signals of frequencies having above and below its cutoff frequencies. i.e. the Band-Pass Filter has a pass band between two cutoff frequencies  $f_H$  and  $f_L$  where  $f_H > f_L$  and two stop bands:  $0 < f < f_L$  and  $f > f_H$ . The 3-db band width of filter is  $f_H$ -f<sub>L</sub>.

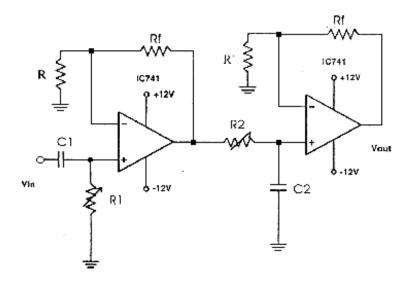



Figure 1

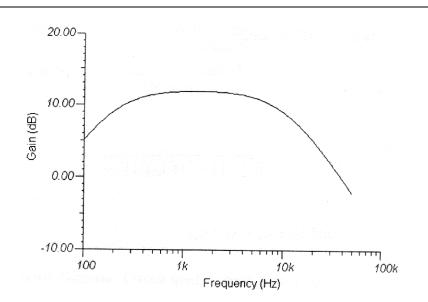



Figure 2

A Wide Band-Pass Filter is formed by cascading a High Pass Filter and Low Pass Filter.

If the High-Pass Filter and Low-Pass Filter are of the first order then the Band-Pass Filter will have a roll off rate of -20db/decade.

For the high pass section the magnitude of gain is given by

$$|G_{\rm IP}| = \frac{\Lambda_{\rm cl}^* (f/f_{\rm L})}{1 + j(f/f_{\rm L})} \qquad |G_{\rm IP}| = \frac{\Lambda_{\rm cl}^* (f/f_{\rm L})}{\{1 + (f/f_{\rm L})^2\}^{1/2}}$$

 $A_{01} = 1 + R_F / R =$  Pass band gain of High pass section

f = frequency of input signal

 $f_L = 1/2 \ \pi \ R_1 C_1 = Low \ cut \ off \ frequency$ 

For the Low pass section the magnitude of gain is given by

$$|G_{LP}| = \frac{A_{02}}{1 + j(f/f_{II})} \qquad |G_{LP}| = \frac{A_{02}}{\{1 + (f/f_{II})^2\}^{1/2}}$$

 $A_{02} = 1 + R_F / R = pass band gain of Low pass section$ 

f = frequency of input signal

 $f_H = 1/2 \ \pi R_2 C_2 = High \ cutoff \ frequency$ 

The voltage gain magnitude of wide Band Pass Filter is the product of gains of low pass sections  $(G_{LP})$  and High Pass section  $(G_{HP})$ 

$$\frac{\text{Vout}}{\text{Vin}} \bigg| - \frac{\Lambda_0(f/f_L)}{\left[ \{1 + (f/f_L)^2\} \ \{1 + (f/f_{LL})^2\} \}^{1/2} \right]}$$

Where the total pass band gain  $A_0 = A_{01} * A_{02}$ 

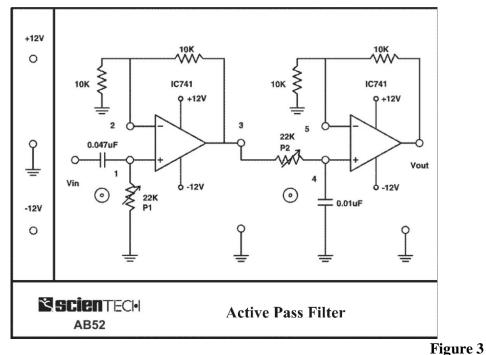
Scientech Technologies Pvt. Ltd.

AB52

# Experiment

**Objective :** 

Study of the Active Band Pass Filter and to evaluate


- 1. Low cutoff frequency  $f_L$ .
- 2. High cutoff frequency  $f_{H}$ .
- 3. 3 db Bandwidth.
- 4. Plot the frequency response of Band-Pass Filter.

# **Equipment Needed :**

- 1. Analog board of **AB52**.
- 2. DC power supplies +12V, -12V from external source or ST2612 Analog Lab.
- 3. Function generator or ST2612 Analog Lab.
- 4. Oscilloscope Caddo 802 or equivalent
- 5. Digital Multimeter
- 6. 2 mm Patch Cords.

# Circuit diagram :

Circuit used to study Active Band Pass Filter shown in figure 3.



### **Procedure :**

- 1. Connect Ohmmeter between Test Point 1 and Gnd. Adjust resistance value to approximately 17K by varying the potentiometer P1 to set the Low cutoff frequency ( $f_L$ ) at 200Hz.
- 2. Connect Ohmmeter between Test Point 3 and Test Point 4. Adjust resistance value to approximately 800 ohms by varying the potentiometer P2 to set the High cutoff frequency ( $f_H$ ) at 20 KHz.
- **3.** Connect +12V and -12V DC power supplies at there indicated position from external source or **ST2612** Analog Lab.
- **4.** Switch 'On' the Power Supply.
- **5.** Connect a sinusoidal signal of amplitude 1V (p-p) of frequency 1 KHz to the Test Point Vin of Band-Pass Filter from external source or **ST2612** Analog Lab.
- 6. Observe output on Oscilloscope by connecting Test Point Vout to Oscilloscope.
- 7. Increase the frequency of input signal step by step and observe the effect on output Vout on Oscilloscope.
- 8. Decrease the frequency of input signal step by step and observe the effect on output Vout on Oscilloscope.
- **9.** Tabulate values of Vout, gain, gain (db) at different values of input frequency shown in Observation Table.
- **10.** Plot the frequency response of Band-Pass Filter using the data obtained at different input frequencies.

| Resistance<br>P1(W) | Capacitance<br>C <sub>1</sub> (mF) | f <sub>L</sub><br>(Hz) | Resistance<br>P2 (W) | Capacitance<br>C <sub>2</sub> (mF) | f <sub>H</sub><br>(Hz) |
|---------------------|------------------------------------|------------------------|----------------------|------------------------------------|------------------------|
| 17K                 | 0.047                              | 200                    | 800                  | 0.01                               | 20K                    |
| 6.7K                | 0.047                              | 500                    | 3184                 | 0.01                               | 5K                     |
| 3.38K               | 0.047                              | 1K                     | 1.59K                | 0.01                               | 10K                    |

**11.** Perform the same procedure at different Cutoff frequencies shown below.

### **Observation Table :**

| Sr.<br>No. | Input freq.<br>(Hz)  | Vout | V out / Vin =<br>gain | Gain (db) =<br>20 log  vout / vin |
|------------|----------------------|------|-----------------------|-----------------------------------|
| 1.         | 50                   |      |                       |                                   |
| 2.         | 100                  |      |                       |                                   |
| 3.         | 200(f <sub>L</sub> ) |      |                       |                                   |
| 4.         | 500                  |      |                       |                                   |
| 5.         | 1K                   |      |                       |                                   |
| 6.         | 2K                   |      |                       |                                   |
| 7.         | 5K                   |      |                       |                                   |
| 8.         | 10K(f <sub>H</sub> ) |      |                       |                                   |
| 9.         | 15K                  |      |                       |                                   |
| 10.        | 20K                  |      |                       |                                   |
| 11.        | 30K                  |      |                       |                                   |

# **Theoretical Calculations :**

- **1.** Pass band gain of Band Pass Filter  $A_0 = A_{01} * A_{02}$
- 2. Pass band gain (db) 20 log |Vout / Vin|
- 3. High cutoff frequency  $f_H = 1/2\pi R_2 C_2$
- 4. Low cutoff frequency  $f_L = 1/2 \pi R_1 C_1$
- **5.** 3 db Bandwidth =  $f_H f_L$

# **Results :**

|                                      | Theoretical | Practical |
|--------------------------------------|-------------|-----------|
| Pass band gain A <sub>0</sub>        |             |           |
| Pass band gain (db)                  |             |           |
| High cutoff frequency f <sub>H</sub> |             |           |
| Low cutoff frequency $f_L$           |             |           |
| 3 db Bandwidth                       |             |           |

**Data Sheet** 

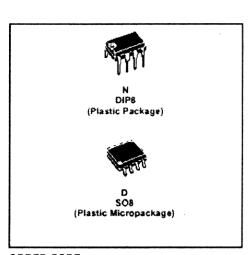


# mA741

# UA741

# GENERAL PURPOSE SINGLE OPERATIONAL AMPLIFIER

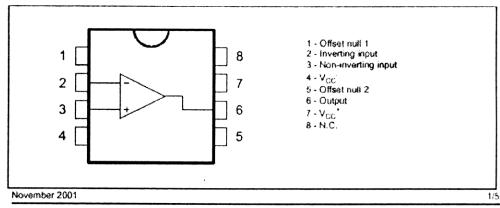
- LARGE INPUT VOLTAGE RANGE
- NO LATCH-UP
- HIGH GAIN
- SHORT-CIRCUIT PROTECTION
- NO FREQUENCY COMPENSATION
- REQUIRED
- SAME PIN CONFIGURATION AS THE UA709


#### DESCRIPTION

The UA741 is a high performance monolithic operational amplifier constructed on a single silicon chip. It is intented for a wide range of analog applications.

- E Summing amplifier
- Voltage follower
- integrator
- Active filter
- Function generator

The high gain and wide range of operating voltages provide superior performances in integrator, summing amplifier and general feedback applications. The internal compensation network (6dB/ octave) insures stability in closed loop circuits.






ORDER CODE

| Denthumber        | T                 | Package |   |  |
|-------------------|-------------------|---------|---|--|
| Part Number       | Temperature Range | N       | D |  |
| UAT41C            | 0*C, +70*C        | •       | • |  |
| UA741I            | -40°C, +105°C     | •       | • |  |
| UA741M            | -55°C, +125°C     | •       | • |  |
| Example : UA741CN |                   |         |   |  |

N \* Duaiis Line Package (DIP) D \* Smat Duane Package (SO) - also avariable in Tape & Reel (ST)



### Warranty

- 1. We guarantee the product against all manufacturing defects for 24 months from the date of sale by us or through our dealers. Consumables like dry cell etc. are not covered under warranty.
- 2. The guarantee will become void, if
  - a) The product is not operated as per the instruction given in the operating manual.
  - b) The agreed payment terms and other conditions of sale are not followed.
  - c) The customer resells the instrument to another party.
  - **d**) Any attempt is made to service and modify the instrument.
- **3.** The non-working of the product is to be communicated to us immediately giving full details of the complaints and defects noticed specifically mentioning the type, serial number of the product and date of purchase etc.
- 4. The repair work will be carried out, provided the product is dispatched securely packed and insured. The transportation charges shall be borne by the customer.

For any Technical Problem Please Contact us at <a href="mailto:service@scientech.bz">service@scientech.bz</a>

#### List of Accessories

| 1. | 2mm Patch Cord 16" (Red)   | 2 Nos.                      |
|----|----------------------------|-----------------------------|
| 2. | 2mm Patch Cord 16" (Black) | 2 Nos.                      |
| 3. | 2mm Patch Cord 16" (Blue)  | 2 Nos.                      |
| 4. | e-Manual                   | 1 No.<br>Updated 26-06-2009 |
|    |                            |                             |